GAZ YOQUVCHI SANOAT PECHLARIDA HARORAT, BOSIM VA YONISH JARAYONLARINI SUN’IY INTELLEKT ASOSIDA OPTIMALLASHTIRUVCHI INTEGRALLASHGAN BOSHQARUV TIZIMI

Mualliflar

  • O‘tkir Xolmanov

Kalit so'zlar

https://doi.org/10.47390/ts-v3i12y2025N06

Kalit so'zlar

gaz yoquvchi pech, sun’iy intellekt, noaniq mantiq, neyron tarmoq, integrallashgan boshqaruv, energiya tejamkorlik, yonish jarayoni, haroratni rostlash.

Annotasiya

Mazkur maqolada gaz yoquvchi sanoat pechlarida harorat, bosim va yonish jarayonlarini sun’iy intellekt asosida optimallashtiruvchi integrallashgan intellektual boshqaruv tizimini ishlab chiqish masalalari yoritilgan. Tadqiqotning asosiy maqsadi pechlardagi issiqlik-energetik jarayonlarning samaradorligini oshirish, yoqilg‘ining to‘liq yonishini ta’minlash hamda energiya sarfini kamaytirishdan iborat. An’anaviy PID-regulyatorlar dinamik noaniqliklar, tashqi buzilishlar va texnologik parametrlarning keskin o‘zgarishi sharoitida yetarli aniqlikni ta’minlay olmaydi. Shu sababli ishda neyron tarmoqlar, noaniq mantiq (fuzzy logic) va gibrid intellektual algoritmlar asosida adaptiv boshqaruv strukturasini yaratish taklif etiladi. Ishlab chiqilgan tizim harorat, bosim va gaz-havo nisbatini real vaqt rejimida monitoring qilish, prediktiv tahlil asosida yonish jarayonini optimallashtirish hamda avariya holatlarining oldini olish imkonini beradi. Boshqaruv algoritmlari MATLAB/Simulink muhitida modellashtirilib, klassik PID tizim bilan solishtirma tahlil o‘tkazildi. Natijalar shuni ko‘rsatdiki, sun’iy intellekt asosidagi integrallashgan boshqaruv tizimi harorat barqarorligini 18–25%, energiya tejamkorligini esa 12–20% gacha oshirishga erishdi. Olingan ilmiy natijalar metallurgiya, shisha eritish, keramika va qurilish materiallari sanoatida keng amaliy qo‘llash imkoniyatiga ega.

Manbalar

1. Boyadjiev, G. (2019). Industrial furnace control systems. Berlin: Springer.

https://doi.org/10.1007/978-3-030-14525-2

2. Trinks, W., Mawhinney, M.H., Shannon, R.A. (2017). Industrial furnaces (6th ed.). Hoboken: Wiley. https://doi.org/10.1002/9781118989022

3. Glassman, I., Yetter, R.A., Glumac, N.G. (2015). Combustion (5th ed.). London: Academic Press. https://doi.org/10.1016/C2013-0-16407-6

4. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2017). Fundamentals of heat and mass transfer (7th ed.). Wiley. https://doi.org/10.1002/9781119320428

5. Holman, J.P. (2016). Heat transfer (10th ed.). New York: McGraw-Hill.

6. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

https://doi.org/10.1016/S0019-9958(65)90241-X

7. Wang, L., Cheng, X. (2019). Neural network based control of industrial furnaces. Neurocomputing, 332, 12–21. https://doi.org/10.1016/j.neucom.2018.11.087

8. Slotine, J.J.E., Li, W. (2017). Applied nonlinear control. Prentice Hall.

9. Turns, S.R. (2016). Combustion theory: analysis, mechanisms, and experiments. Progress in Energy and Combustion Science, 54, 1–75. https://doi.org/10.1016/j.pecs.2015.10.001

10. Li, S., Zhang, H., Wang, J. (2020). Artificial intelligence-based combustion optimization for industrial furnaces. Energy, 198, 117279. https://doi.org/10.1016/j.energy.2020.117279

11. Kim, J., Lee, S. (2021). Intelligent furnace temperature control using adaptive fuzzy systems. Applied Thermal Engineering, 185, 116389.

https://doi.org/10.1016/j.applthermaleng.2020.116389

12. Åström, K.J., Hägglund, T. (2019). Advanced PID control. ISA – Instrumentation, Systems, and Automation Society. https://doi.org/10.1002/9781119587142

13. Yusupbekov A.N., Kholmanov U.U. Intelligent glass production process control system // Lecture Notes in Networks and Systems, 2024, 912 LNNS, pp. 103–109. https://doi.org/10.1007/978-3-031-53488-1_12

14. Goodfellow, I., Bengio, Y., Courville, A. (2017). Deep learning. MIT Press.

https://www.deeplearningbook.org

15. Liu, X., Zhang, Y. (2020). Hybrid intelligent control systems for complex industrial processes. ISA Transactions, 98, 182–194. https://doi.org/10.1016/j.isatra.2019.08.012

16. Yusupbekov N.R., Kholmanov U.U. System of automatic control of the technological process of combustion in gas combustion furnaces. AIP Conference Proceeding, 2024, 3119(1), 060011. https://doi.org/10.1063/5.0214847

17. Kholmanov U.U. Shamsutdinova V.H. Application of gas mixture detectors for automatic control systems. AIP Conference Proceeding, 2024, 3119(1), 030005, https://doi.org/10.1063/5.0214844

##submission.downloads##

Yuborilgan

2025-12-26

Nashr qilingan

2025-12-27

Qanday ko'rsatish

Xolmanov, O. (2025). GAZ YOQUVCHI SANOAT PECHLARIDA HARORAT, BOSIM VA YONISH JARAYONLARINI SUN’IY INTELLEKT ASOSIDA OPTIMALLASHTIRUVCHI INTEGRALLASHGAN BOSHQARUV TIZIMI. Techscience Uz - Topical Issues of Technical Sciences, 3(12), 43–53. https://doi.org/10.47390/ts-v3i12y2025N06

##plugins.generic.recommendBySimilarity.heading##

1 2 3 4 5 6 7 8 9 10 > >> 

##plugins.generic.recommendBySimilarity.advancedSearchIntro##