BAZALT TOLASI BILAN MODIFIKATSIYALANGAN AVTOMOBIL GRUNTOVKASINI YAQIN INFRAQIZIL NUR BILAN QURITISH TEXNOLOGIYASINING SAMARADORLIGI VA MEXANIZMLARI
Kalit so'zlar
https://doi.org/10.47390/issn3030-3702v3i4y2025N02Kalit so'zlar
bazalt tolasi, epoksid gruntovka, yaqin infraqizil (YAIQ) nurlanish, fototermik konversiya, energiya samaradorligi, silanli fazalararo modifikatsiya, ultrasonik dispersiyalash, avtomobil boʻyash sexi, termal tahlil.Annotasiya
Ushbu ilmiy tahlil avtomobilsozlik sanoatining eng dolzarb muammolaridan biri – boʻyash sexlarida energiya sarfini kamaytirish masalasiga bagʻishlangan. Anʼanaviy konveksion quritish pechlari avtomobil zavodining umumiy energiya isteʼmolining 70% gacha qismini tashkil etadi, bu esa ishlab chiqarish tannarxini oshiradi va atrof-muhitga salbiy taʼsir koʻrsatadi. Ushbu muammoning innovatsion yechimi sifatida bazalt tolasi bilan modifikatsiyalangan epoksid gruntovkalarni yaqin infraqizil (YAIQ) nurlanish yordamida quritish texnologiyasi taklif etilmoqda. Tadqiqot metodologiyasi materialshunoslik (bazalt tolasi xossalari), polimerlar kimyosi (gruntovka tarkibi, faza-aro modifikatsiya), jarayonlar muhandisligi (YAIQ nurlanish fizikasi, dispersiyalash usullari) va sanoat muhandisligi (energiya samaradorligi) sohalaridagi adabiyotlarni tizimli tahlil qilishga asoslangan. Asosiy natijalar shuni koʻrsatadiki, bazalt tolasining noyob fototermik xususiyatlari va epoksid matritsasining YAIQ nurini yutish qobiliyati oʻrtasidagi sinergiya quritish jarayonini sezilarli darajada tezlashtiradi va energiya sarfini 90% gacha kamaytiradi.
Manbalar
1. Rajemi D., Johnson M. Energy consumption in automotive painting processes and potential savings. Journal of Coatings Technology and Research. 2018;15(2):123–134.
2. Zhang L., Li J. Mechanisms of near-infrared curing in polymer coatings. Polymer Reviews. 2019;59(3):523–551.
3. Sato K., Yamamoto T. Infrared drying of waterborne coatings: wavelength influence. Progress in Organic Coatings. 2015;79:168–175.
4. Wang X., Zhao Y. Near-infrared curing technology for automotive paint: energy and environmental benefits. Journal of Cleaner Production. 2019;210:1055–1063.
5. Suslick K.S., Flannigan D.J. Inside a collapsing bubble: sonochemistry and sonoluminescence. Annual Review of Physical Chemistry. 2008;59:659–683.
6. Plueddemann E.P. Silane coupling agents. New York: Springer; 1991.
7. Almeida F.C., Singh R. Photothermal conversion properties of basalt fibers under NIR irradiation. Composite Science and Technology. 2018;169:12–20.
8. Laukli H.I. Mechanical and thermal properties of basalt fibers compared to conventional reinforcements. Materials Letters. 2006;60(9):1159–1162.
9. Brown R.J., Runt J. Thermal analysis of polymers. New York: Wiley; 2002.
10. Menard K.P. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 2008.
11. Goldstein J.I., Newbury D.E., Joy D.C., Lyman C.E., Echlin P., Lifshin E., Sawyer L. Scanning electron microscopy and X-ray microanalysis. 4th ed. New York: Springer; 2017.
12. ASTM D3039/D3039M-17. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken, PA: ASTM International; 2017.
13. ASTM D7264/D7264M-15. Standard test method for flexural properties of polymer matrix composite materials. West Conshohocken, PA: ASTM International; 2015.
14. Абакумов В.П. Базалтове волокна: свойства и применениэ [Basalt fibers: properties and applications]. Moscow: Nedra; 2015.
15. Egamberdiev E., Haydullaev X. Reinforcement of cellulose-based composites with basalt fibers. Journal of Polymer Composites. 2020;29(4):363–370.