SIMSIZ SENSOR TARMOQLARI UCHUN MASHINAVIY O‘RGANISH ASOSIDAGI ENERGIYA TEJAMKOR MARSHRUTLASH PROTOKOLI
Kalit so'zlar
https://doi.org/10.47390/ts-v3i12y2025N14Kalit so'zlar
Mashinaviy o‘rganish, noravshan mantiq, Q-o‘qitish, klaster bosh tuguni tanlash, kuchaytirilgan o‘rganish.Annotasiya
Simsiz sensor tarmoqlari (SST) atrof-muhit monitoringi, sanoatni avtomatlashtirish, qishloq xo‘jaligi monitoringi shuningdek, ko‘plab rivojlanayotgan IoT tizimlarida tobora muhim rol o‘ynamoqda. Sensor tugunlarining energiya bo‘yicha cheklovlari tufayli energiya tejamkor marshrutlash protokollarini ishlab chiqish ushbu sohadagi eng dolzarb muammolardan biri bo‘lib qolmoqda. LEACH, HEED va PEGASIS kabi an’anaviy marshrutlash protokollari statik qoidalarga asoslanadi va ko‘pincha dinamik tarmoq sharoitlariga moslasha olmaydi, natijada energiyaning nomutanosib sarflanishi va tugunlarning muddatidan oldin ishdan chiqishi kuzatiladi.Ushbu maqolada mashina o‘rganish asosidagi energiya tejamkor marshrutlash protokoli (ML-EERP) taklif etilmoqda. Mazkur protokol noravshan mantiqqa asoslangan klaster-bosh (KB) tugunini tanlash va Q-o‘qitishga asoslangan ko‘p oraliqli marshrutni optimallashtirishni birlashtiruvchi gibrid protokoldir. Noravshan mantiq tizimi qoldiq energiya, tugun zichligi, aloqa sifatini va bazaviy stansiyaga bo‘lgan masofani KB tugunni tanlash jarayoniga birlashtiradi.
Klasterlar shakllantirilgandan so‘ng, tugunlar uzatish energiyasini kamaytirgan holda ishonchlilikni saqlab turish uchun keyingi optimal tugunni tanlashdda Q-o‘qitishdan foydalanadi. MATLAB va Python dasturlash muhitlarida birinchi tartibli radio energiya modeli asosida o‘tkazilgan simulyatsiyalar ML-EERP protokoli LEACH va HEED protokollaridan sezilarli darajada ustun ekanligini ko‘rsatadi. Taklif etilayotgan protokol tarmoqning yashovchanligini uzaytiradi, umumiy energiya sarfini kamaytiradi va paketlar yetkazib berish koeffitsiyentini oshiradi.
Manbalar
1. Chaudhari, A., Deshpande, V., & Midhunchakkaravarthy, D. (2025). Energy-efficient Q-learning-based routing in wireless sensor networks. International Journal on Smart Sensing and Intelligent Systems, 18(1). https://doi.org/10.2478/ijssis-2025-0008
2. X. Su, Y. Ren, Z. Cai, Y. Liang and L. Guo, "A Q-Learning-Based Routing Approach for Energy Efficient Information Transmission in Wireless Sensor Network," in IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1949-1961, June 2023, doi: 10.1109/TNSM.2022.3218017
3. Karmakar, Payal. (2025). Q-Learning-based Energy-Efficient Custom Cooperative Routing Protocol for Underwater Wireless Sensor Network. Science & Technology Journal. 13. 10.22232/stj.2025.13.01.20
4. Soltani, P., Eskandarpour, M., Ahmadizad, A., & Soleimani, H. (2025). Energy-Efficient Routing Algorithm for Wireless Sensor Networks: A Multi-Agent Reinforcement Learning Approach. arXiv preprint. https://doi.org/10.48550/arXiv.2508.14679
5. Song, Y., Liu, Z., Li, K., He, X., & Zhu, W. Research on High-Efficiency Routing Protocols for HWSNs Based on Deep Reinforcement Learning. Electronics, 13(23), 4746. https://doi.org/10.3390/electronics13234746
6. Sakthimohan, M. et al. Secure deep learning-based energy efficient routing with intrusion detection system for wireless sensor networks, Journal of Ambient Intelligence. https://doi.org/10.3233/JIFS-2355
7. A.Kumar, Deepak Prasad “Deep Learning-Based Route Optimization in Wireless Sensor Networks: Enhancing Energy Efficiency, Reliability, and Scalability” . International Journal of Science and Technology, 1(12). https://doi.org/10.62796/pijst.2024v1i12001
8. Ambareesh, S., Chavan, P., Supreeth, S. et al. A secure and energy-efficient routing using coupled ensemble selection approach and optimal type-2 fuzzy logic in WSN. Sci Rep 15, 38 (2025). https://doi.org/10.1038/s41598-024-82635-w
9. Kumar, A.P., R, S., M, C., Dhananjaya, S., N, K.M., G, N. (2024). An energy-efficient and secure WSN routing protocol using Bayesian networks and elitist genetic algorithms. Journal Européen des Systèmes Automatisés, Vol. 57, No. 6, pp. 1547-1555. https://doi.org/10.18280/jesa.570601
10. R. Alanazi et al. Machine learning-driven routing optimization for energy-efficient WSNs using 6G. https://doi.org/10.1016/j.aej.2025.07.032
11. Shekar, K., Reddy, N.R., Arvind, S. et al. Implementation of novel learning based energy efficient routing protocols in wireless sensor networks for internet of things use cases. Discov Computing 28, 190 (2025). https://doi.org/10.1007/s10791-025-09718-8
12. Thakur, S. et al. (2025). AI-Driven Energy-Efficient Routing in IoT-Based Wireless Sensor Networks: A Comprehensive Review. Sensors, 25(24), 7408.
13. Van-Vi Vo, Tien-Dung Nguyen, Duc-Tai Le, Hyunseung Choo “Distributed Q-learning-based Shortest-Path Tree Construction in IoT Sensor Networks” https://doi.org/10.48550/arXiv.2511.11598
14. Komal Advanced Mathematical Modelling for Energy-Efficient Data Transmission and Fusion in Wireless Sensor Networks. https://doi.org/10.48550/arXiv.2407.12806
15. F. H. El-Fouly, M. Kachout, R. A. Ramadan, A. J. Alzahrani, J. S. Alshudukhi, and I. M. Alseadoon, “Energy-Efficient and Reliable Routing for Real-time Communication in Wireless Sensor Networks”, Eng. Technol. Appl. Sci. Res., vol. 14, no. 3, pp. 13959–13966, Jun. 2024.


