LI-ION BATTERIYALARINING ISHLASH MUDDATIGA FOYDALANISH TURLARINING TA’SIRI
Kalit so'zlar
https://doi.org/10.47390/ts-v3i7y2025N7Kalit so'zlar
litiy-ion batareyalar, degradatsiya mexanizmlari, zaryadlash odatlari, foydalanish turlari, zaryad chiqarish chuqurligi, C-darajalar, zaryad holati, ekstremal iqlim, tsikl muddati, quvvat pasayishi.Annotasiya
Litiy-ion (Li-ion) batareyalarning ishlash muddati ularning foydalanish turlari va sharoitlari bilan chambarchas bog‘liq bo‘lib, bu omillar degradatsiya jarayonining boshlanishi va tezligiga sezilarli ta’sir ko‘rsatadi. Zaryad chiqarish chuqurligi (DoD), zaryadlash/chiqarish tezligi va zaryad holati (SoC) boshqaruvi kabi o‘zgarishlar, ayniqsa, og‘ir ish sharoitlari va iqlimiy omillar ta’sirida batareya ishlashining pasayishiga olib keladi [1][4]. Tez-tez chuqur zaryad chiqarish elektrodlarning charchashi va elektrolitning beqarorligini tezlashtirsa, yuqori va past C-darajalar issiqlik va mexanik stressni kuchaytirib, tuzilishga zarar yetkazadi va qarshilikning o‘sishiga sabab bo‘ladi [2][6]. Bundan tashqari, tartibsiz zaryadlash odatlari, masalan, tasodifiy qayta zaryadlash, batareyalarni noqulay SoC oralig‘ida ushlab turadi, bu esa qattiq elektrolit interfeysi (SEI) qayta o‘sishi va litiy qoplamasi kabi yon reaksiyalarni kuchaytiradi [4][7]. Ushbu stress omillarining o‘zaro ta’siri ekstremal iqlimiy sharoitlarda yanada kuchayadi, bunda yuqori haroratlar elektrolitning parchalanishini tezlashtiradi, past haroratlar esa ion tashilishini qiyinlashtirib, degradatsiya mexanizmlarini yanada murakkablashtiradi [7][9]. Shu sababli, foydalanish turlari va iqlim omillarining birgalikdagi ta’sirini tushunish bashoratli modellarini takomillashtirish, batareya boshqaruv tizimlari (BMS) strategiyalarini yo‘naltirish va elektromobillar hamda statsionar energiya saqlash tizimlarida xizmat muddatini uzaytirish uchun juda muhimdir [3][8].
Manbalar
1. P. Keil and A. Jossen, “Charging protocols for lithium-ion batteries and their impact on cycle life. An experimental study with different 18650 high-power cells,” Journal of Energy Storage, vol. 6, pp. 125–141, 2016.
2. M. Dubarry, C. Truchot, and B. Y. Liaw, “Synthesis of degradation modes at high-rate cycling of commercial lithium-ion cells,” Journal of Power Sources, vol. 219, pp. 204–216, 2012.
3. D. Anseán, M. González, J. C. Viera, V. M. García, C. Blanco, and M. Valledor, “Evaluation of Li-ion high power performance and degradation for electric vehicle applications based on field collected data,” Energy, vol. 172, pp. 1235–1245, 2019.
4. J. Vetter et al., “Ageing mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 147, no. 1–2, pp. 269–281, 2005.
5. S. Santhanagopalan, Q. Zhang, K. Kumaresan, and R. E. White, “Parameter estimation and life modeling of lithium-ion cells,” Journal of The Electrochemical Society, vol. 155, no. 4, pp. A345–A353, 2008.
6. R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells,” Journal of Power Sources, vol. 113, no. 1, pp. 81–100, 2003.
7. X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, and M. Ouyang, “A review on the key issues of the lithium ion battery degradation among the whole life cycle,” eTransportation, vol. 1, pp. 100005, 2019.
8. A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” Journal of Power Sources, vol. 241, pp. 680–689, 2013.
9. Y. Li, J. Zheng, L. Zhang, J. Yang, and H. Chen, “Impact of temperature and depth of discharge on cycle life of lithium-ion batteries,” Journal of Solid State Electrochemistry, vol. 18, no. 7, pp. 1621–1627, 2014.