K-MEANS KLASTERLASH ALGORITMI YORDAMIDA TALABALAR MA'LUMOTLARINI TAHLIL QILISH

Mualliflar

  • Akrom Hamiyev
  • Kamoliddin Xusanov

Kalit so'zlar

https://doi.org/10.47390/ts-v3i12y2025N07

Kalit so'zlar

ta'lim sohasida ma'lumotlarni qazib olish (EDM), K-means klasterlash, talabalar segmentatsiyasi, shaxsiylashtirilgan ta'lim, o‘quv tahlili, mashinali o‘rganish, xulq-atvor tahlili.

Annotasiya

Ushbu maqolada ta’lim sohasida ma’lumotlarni qazib olishning (Educational Data Mining - EDM) muhim yo‘nalishi bo‘lgan klasterlash tahlilidan foydalanilgan. Maqolada K-means klasterlash algoritmi yordamida talabalarning o‘quv faoliyati va xulq-atvoriga oid ma'lumotlarni tahlil qilish metodologiyasi taklif etilgan. Tadqiqot doirasida talabalar o‘zlarining o‘xshash xususiyatlariga ko‘ra turli guruhlarga (klasterlarga) ajratilgan. Har bir klaster o‘ziga xos xususiyatlari, jumladan, akademik o‘zlashtirish, onlayn platformalardagi faollik va o‘quv resurslaridan foydalanish intensivligi bilan tavsiflangan. Natijalar shuni ko‘rsatadiki, K-means algoritmi talabalarni aniq segmentlarga ajratish imkonini beradi.

Tadqiqot natijalari ta'lim muassasalari ma'muriyati uchun ma'lumotlarga asoslangan qarorlar qabul qilishda va o‘quv jarayonini shaxsiylashtirishda amaliy ahamiyatga ega.

Manbalar

1. Ahmed, W., et al. (2025). This study addresses challenges in performance analysis, quality education delivery, and student evaluation through machine learning (ML) models. Nature Scientific Reports.

2. Gupta, S., et al. (2017). A Local Search Algorithm for k-Means Clustering with Outliers. Proceedings of the VLDB Endowment, 10(7).

3. Burgos, C., et al. (2018). Data mining for modeling students’ performance: a tutoring action plan to prevent academic dropout. Computers & Electrical Engineering, 66, 541–556.

4. DeFreitas, K. (s.a.). A Case-Based Evaluation of Clustering Algorithms for Educational Data Mining. International Journal of Computer Science and Information Systems, 10(2), 59-74.

5. Jin, J., et al. (2025). Applying the K-means clustering algorithm makes group division more flexible. Discovery Education. https://doi.org/10.1007/s44163-025-00433-3

6. Kalita, E., Oyelere, S.S., Gaftandzhieva, S., et al. (2025). Educational data mining: a 10-year review. Discov Computing, 28(81). https://doi.orgorg/10.1007/s10791-025-09589-z

7. Liu, R. (2022). This research constructs a data analysis model for education evaluation using the K-means clustering technique in DM. PMC NCBI. https://doi.org/10.1155/2022/7694888

8. Malik, S., et al. (2025). The decision tree method outperformed K-means clustering and naive Bayes. Nature Scientific Reports.

9. Nalli, G. (2021). This work proposes a novel intelligent plugin for Moodle that allows the creation of heterogeneous groups by using Machine Learning. Applied Sciences, 11(13), 5800.

10. Papadogiannis, I. (2024). Educational data mining (EDM) is a scientific area that analyzes datasets from educational settings. MDPI.

11. Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: an updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1355

12. A Hamiyev, Q Faxriddin, K Kholiyorov. Optimizing Water Consumption in Agriculture Using an AI-Based Irrigation Management System. American Journal of Technology Advancement 2 (6), 91-94.

13. AT Hamiyev. Approaches to eliminating the limitations of expert systems. Western European Journal of Modern Experiments and Scientific Methods 3 (01), 43-45.

14. NА Sidikovich, H Аkrom, X Xolbek. To ‘g ‘ri burchаkli plаstinkаning kuch tа’siridаgi deformаsiyаlаngаnlik holаtini tаdqiq qilish. Al-Farg’oniy avlodlari 1 (2), 141-147.

15. Prahani, B. K., et al. (2022). Learning management system (LMS) research during 1991–2021: How technology affects education. International Journal of Emerging Technologies in Learning, 17(17), 28–49.

16. Sedrakyan, G., et al. (2020). Linking learning behaviour analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512.

17. Wang, J., et al. (2025). This paper proposes a machine learning method for the prediction of student performance based on online learning. PLOS ONE. https://doi.org/10.1371/journal.pone.0299018

18. Shovon, H. I., & Haque, M. (2012). An Approach of Improving Student’s Academic Performance by using K-means clustering algorithm and Decision tree. International Journal of Advanced Computer Science and Applications, 3(8).

##submission.downloads##

Yuborilgan

2025-12-26

Nashr qilingan

2025-12-27

Qanday ko'rsatish

Hamiyev, A., & Xusanov, K. (2025). K-MEANS KLASTERLASH ALGORITMI YORDAMIDA TALABALAR MA’LUMOTLARINI TAHLIL QILISH. Techscience Uz - Topical Issues of Technical Sciences, 3(12), 54–62. https://doi.org/10.47390/ts-v3i12y2025N07

##plugins.generic.recommendBySimilarity.heading##

1 2 3 4 5 > >> 

##plugins.generic.recommendBySimilarity.advancedSearchIntro##