MASHINALI OʻQITISH MODELLARI UCHUN BELGILAR FAZOSINI SHAKLLANTIRISH YONDASHUVI

Авторы

  • Shohrux Matchonov
  • Timur Asatov

DOI:

https://doi.org/10.47390/ts-v3i9y2025No2

Ключевые слова:

One-Hot Encoding, Label Encoding, Binning, Empirik qoida, MinMax normallashtirish, z-normallashtirish, StandardScaler, Normallashtirish, Masshtablash.

Аннотация

Mazkur ishda ma’lumotlarga ishlov berish masalasini echishda belgilar fazosini shakllantirish yondashuvlari qarab oʻtilgan boʻlib, dasturlash muhitida uning amalga oshirilish mexanizmi tadqiq etiladi. Dasturiy muhitda ma’lumotlar hususiyatlari bilan ishlagan holda ichki bogʻliqliklarni hosil qilish, ma’lumot kategoriyalariga ajratish, va kategorik oʻzgaruvchilar bilan ishlash yondashuvlari, raqamli ma’lumotlarni guruhlashtirish, masshtablash va normallashtirish usullari bayon etilgan.

Библиографические ссылки

1. Ma, Z., Jørgensen, B. N., & Ma, Z. G. (2025). A systematic data characteristic understanding framework towards physical-sensor big data challenges. *arXiv*, 22-yanvar. Model 6V (volume, variety, velocity, veracity, value, variability) asosida yirik ma’lumotlardagi muammolarni tahlil qiladi. :contentReference[oaicite:4]{index=4}.

2. Mualliflar aniqlanmagan]. (2025). *A Comprehensive Survey on Big Data Analytics*. **ACM Digital Library**. Yirik ma’lumotlarning volume, velocity, variety xususiyatlari va ulardan kelib chiqadigan murakkabliklar — inconsistency, scalability, real-time analytics — haqida keng qamrovli sharh. :contentReference[oaicite:5]{index=5}.

3. Ф.Н. Нумонов, & Ш.С. Кахаров. (2023). Юзни таниб олиш тизимларида белгилар фазосини шакллантириш масаласи. Qo‘qon universiteti xabarnomasi, 1(1), 1228–1230. https://doi.org/10.54613/ku.v1i1.583.

4. Kunal Pal, Samit Ari, Arindam Bit, Saugat Bhattacharyya. (2023). 1 - Feature engineering methods. Advanced Methods in Biomedical Signal Processing and Analysis journal. Pages 1-29, ISBN 9780323859554. https://doi.org/10.1016/B978-0-323-85955-4.00004-1.

5. (2025). Evaluating Label Encoding and Preprocessing Techniques for Breast Cancer Prediction Using Machine Learning Algorithms. International Journal of Computational Intelligence Systems. 18. 10.1007/s44196-025-00957-7. https://www.researchgate.net/publication/394877247_Evaluating_Label_Encoding_and_Preprocessing_Techniques_for_Breast_Cancer_Prediction_Using_Machine_Learning_Algorithms.

6. Samuels, Jamell. (2024). One-Hot Encoding and Two-Hot Encoding: An Introduction. 10.13140/RG.2.2.21459.76327. https://www.researchgate.net/publication/377159812_One-Hot_Encoding_and_Two-Hot_Encoding_An_Introduction.

7. Muhammad Ali, Peshawa. (2022). Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY. 10. 85-91. 10.14500/aro.10955. https://www.researchgate.net/publication/361504456_Investigating_the_Impact_of_Min-Max_Data_Normalization_on_the_Regression_Performance_of_K-Nearest_Neighbor_with_Different_Similarity_Measurements

Загрузки

Прислана

2025-10-22

Опубликован

2025-10-23

Как цитировать

Matchonov, S., & Asatov, T. (2025). MASHINALI OʻQITISH MODELLARI UCHUN BELGILAR FAZOSINI SHAKLLANTIRISH YONDASHUVI. Techscience.Uz - Topical Issues of Technical Sciences, 3(9), 8–13. https://doi.org/10.47390/ts-v3i9y2025No2