MATLAB ASOSIDA KARTOSHKA KASALLANGAN BARGI TASVIRINI SHOVQINDAN TOZALASH USULLARINING QIYOSIY TAHLILI
Kalit so'zlar
https://doi.org/10.47390/ts-v3i10y2025No6Kalit so'zlar
tasvirni shovqindan tozalash; Gauss filtrlash; o‘rtacha filtrlash; median filtrlash; bilateral filtrlash; veyvlet filtrlash.Annotasiya
Tasvirni shovqindan tozalash — tasvirni oldindan qayta ishlashning ajralmas bosqichlaridan biridir. Shovqinni kamaytirishdan maqsad — tasvirdagi ortiqcha shovqin komponentlarini samarali tarzda bartaraf etish hamda asl foydali axborotning o‘zgarishsiz saqlanishini ta’minlashdir. Ushbu maqolada turli shovqinni filtrlash algoritmlarining afzallik va kamchiliklari nazariy jihatdan tahlil qilinadi. Xususan, Gauss filtrlash, o‘rtacha (Mean) filtrlash, median filtrlash, bilateral filtrlash va veyvlet (Wavelet) filtrlash usullari MATLAB muhiti yordamida modellashtirilib, kartoshka bargining kasallangan tasvirlari misolida ularning samaradorligi qiyosiy tahlil qilinadi.
Manbalar
1. BERTALMIO M.Denoising of photographic images and video: fundamentals, open challenges and new trends[M].Barcelona, spain: springer, 2018.
2. Sanaa A, Kruglova L V. Basic mathematical models for pattern recognition and image quality improvement[J]. Current Research, 2025 (18 (253)): 7-15.
3. Sun, M. (2013). Fundamentals of Digital Image Processing and Analysis: Implementation with MATLAB and VC++. Beijing: Publishing House of Electronics Industry.
4. Guan, X. P., Zhao, L. X., & Tang, Y. G. (2005). Hybrid filtering methods for image denoising. Journal of Image and Graphics, (3), 332-337.
5. KO S J, LEE Y H. Center weighted median filters and their applications to image enhancement[J]. IEEE transactions on circuits and systems,1991,38(9): 984-993.
6. MALLAT S G,Multifrequency channel decompositions of images and wavelet models[J]. IEEE transactions on acoustics, speech, and signal processing, 1989, 3 7(12): 2091-2110.
7. WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J].IEEE transactions on image processing, 2004,13(4): 600-612.
8. WANG Z, BOVIK A C. Mean squared error: Love it or leave it? A new look at signal fidelity measures[J]. IEEE signal processing magazine,2009,26(1): 98-117.


