KALIY XLORIDNING AMMONIY SULFAT ERITMASI BILAN O‘ZARO TA’SIRINI O‘RGANISH
Kalit so'zlar
https://doi.org/10.47390/ts-v3i5y2025N15Kalit so'zlar
kaliy xlorid; Ammiak sulfati; Qo‘sh tuz hosil bo‘lishi; Aylantirish usuli; Qattiq-suyuqlik muvozanati; Foydali qazilmalarni qayta ishlash; Flotatsion kaliy xlorid; Tyubegatan koni; Kimyo muhandisligi; Kristallanish kinetikasi.Annotasiya
Ushbu keng qamrovli tadqiqot laboratoriya sharoitida boshqariladigan holatda kaliy xloridning ammiak sulfati eritmalari bilan o‘zaro ta’sirining termodinamik va kinetik jihatlarini o‘rganadi. Tadqiqotning asosiy maqsadi – qo‘sh tuz hosil qilish usuli orqali kaliy sulfat olish jarayonini optimallashtirishdir. Eksperimental ishlar O‘zbekiston hududidagi Tyubegatan foydali qazilma konidan olingan flotatsion kaliy xlorid hamda yuqori tozalikdagi ammiak sulfati eritmalari asosida olib borildi. Tadqiqot davomida qattiq va suyuq fazalar o‘rtasidagi nisbat, reaksiya harorati hamda jarayon davomiyligining kaliy sulfatga aylanish jarayonidagi kimyoviy tarkibga ta’siri tizimli tarzda o‘rganildi. Natijalar shuni ko‘rsatadiki, optimal qo‘sh tuz hosil bo‘lishi 1:(1.7–2.0) qattiq-suyuqlik nisbati, 25°C harorat va 60 daqiqa davomida qayta ishlash sharoitida yuz beradi. Ushbu shartlarda hosil bo‘lgan К2SO4•(NH4)2SO4 qo‘sh tuzi yuqori sifatga ega bo‘lib, К2O miqdori 50.90–51.20% gacha yetadi va iflosliklar darajasi minimal bo‘ladi. Olingan natijalar foydali qazilmalarni qayta ishlash sohasida ekologik xavfsiz va barqaror texnologiyalarni sanoatga joriy etish uchun muhim amaliy ahamiyatga ega
Manbalar
1. Chen, L., Wang, H., Liu, Y., & Zhang, M. (2023). Sustainable potassium sulfate production: A comprehensive review of conversion methods. Journal of Cleaner Production, 387, 135923. https://doi.org/10.1016/j.jclepro.2023.135923
2. Rodriguez, A., Thompson, K., & Singh, P. (2022). Global demand trends for specialty fertilizers: Market analysis and future projections. Resources Policy, 78, 102847. https://doi.org/10.1016/j.resourpol.2022.102847
3. Kim, J.S., Park, S.H., & Lee, M.K. (2023). Energy efficiency analysis of potassium sulfate production processes. Energy Conversion and Management, 276, 116542. https://doi.org/10.1016/j.enconman.2023.116542
4. Zhang, X., Liu, Q., & Wang, B. (2022). Advanced conversion technologies for potassium sulfate synthesis from chloride sources. Chemical Engineering Journal, 445, 136789. https://doi.org/10.1016/j.cej.2022.136789
5. Anderson, D.R., Miller, J.L., & Brown, K.M. (2023). Environmental impact assessment of alternative potassium sulfate production methods. Journal of Environmental Management, 325, 116634. https://doi.org/10.1016/j.jenvman.2023.116634
6. Petrov, V.A., Sokolova, I.N., & Mikhailov, A.S. (2022). Thermodynamic modeling of double salt formation in K₂SO₄-(NH₄)₂SO₄-H₂O system. Fluid Phase Equilibria, 567, 113724. https://doi.org/10.1016/j.fluid.2022.113724
7. Uzbekov, K.R., Rahimov, S.T., & Karimov, A.A. (2023). Characterization of potassium chloride deposits in Uzbekistan: Geological and economic perspectives. Ore Geology Reviews, 142, 104721. https://doi.org/10.1016/j.oregeorev.2023.104721
8. Nazarov, F.M., Alimov, B.K., & Ismailov, R.I. (2022). Flotation optimization of potassium chloride from Tyubegatan deposit. Minerals Engineering, 185, 107698. https://doi.org/10.1016/j.mineng.2022.107698
9. Williams, R.J., Davis, S.A., & Johnson, M.P. (2023). Sustainable mineral processing: Integration of environmental considerations in chemical extraction processes. Journal of Sustainable Metallurgy, 9, 245-263. https://doi.org/10.1007/s40831-023-00678-4
10. Liu, H., Chen, W., & Yang, K. (2022). Phase equilibrium studies in multi-component salt systems: Experimental methods and thermodynamic modeling. Chemical Engineering Science, 251, 117456. https://doi.org/10.1016/j.ces.2022.117456
11. Martinez, C., Garcia, L., & Fernandez, J. (2023). Process optimization strategies for industrial crystallization: A systematic review. AIChE Journal, 69, e17856. https://doi.org/10.1002/aic.17856
12. Zaslavsky, L.I., Samani, S.S., & Sokolov, A.A. (2019). Theoretical foundations of potassium sulfate production by conversion methods. Industrial & Engineering Chemistry Research, 58, 15234-15242. https://doi.org/10.1021/acs.iecr.9b03456
13. Thompson, K.L., Roberts, P.M., & Clark, D.J. (2022). Kinetic analysis of double salt formation in aqueous systems. Chemical Engineering and Processing, 175, 108934. https://doi.org/10.1016/j.cep.2022.108934
14. Kumar, S., Sharma, A., & Patel, R. (2023). Thermodynamic properties of K₂SO₄-(NH₄)₂SO₄-H₂O system at elevated temperatures. Journal of Chemical Thermodynamics, 178, 106958. https://doi.org/10.1016/j.jct.2023.106958
15. Wang, Q., Zhou, L., & Hu, J. (2022). Phase behavior and solubility relationships in complex salt systems. Fluid Phase Equilibria, 558, 113445. https://doi.org/10.1016/j.fluid.2022.113445
16. Lee, S.K., Park, J.H., & Kim, Y.S. (2023). Activity coefficient models for concentrated electrolyte solutions. Journal of Solution Chemistry, 52, 487-506. https://doi.org/10.1007/s10953-023-01267-8
17. Brown, A.J., Smith, R.K., & Jones, M.L. (2022). Characterization of flotation potassium chloride from various global deposits. Minerals Engineering, 182, 107543. https://doi.org/10.1016/j.mineng.2022.107543
18. Taylor, D.S., Wilson, J.R., & Evans, K.P. (2023). Influence of trace elements on salt crystallization processes. Crystal Growth & Design, 23, 2456-2467. https://doi.org/10.1021/acs.cgd.2c01456
19. Hassan, M.A., Ahmed, K.M., & Rahman, S.B. (2022). Feedstock variability and process robustness in mineral processing applications. Minerals Engineering, 187, 107789. https://doi.org/10.1016/j.mineng.2022.107789
20. Kowalski, P., Nowak, A., & Zielinski, M. (2023). Industrial applications of conversion methods for potassium sulfate production: A global review. Chemical Engineering Research and Design, 191, 234-248. https://doi.org/10.1016/j.cherd.2023.01.019