FORMATION AND PREPROCESSING OF MRI AND CT IMAGE DATASETS FOR BRAIN TUMORS
DOI:
https://doi.org/10.47390/issn3030-3702v3i3y2025N01Keywords:
brain tumors, MRI and CT imaging, deep learning, image preprocessing, FastAPI and TensorFlowAbstract
This article examines the crucial role of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans in the diagnosis and classification of brain tumors. From a scientific perspective, the study investigates the processes of compiling MRI and CT brain image datasets, their analysis, development, and preparation for deep learning models.
References
1. World health statistics 2025: monitoring health for the SDGs, Sustainable Development Goals ISBN 978-92-4-011049-6 (electronic version)
2. D.K. Muxamediyeva, A.A. Abdiraximov (2025) “Miya oʻsimtalarini erta tashxislashda sun’iy intellektdan foydalanish: backend api asosidagi yondashuv” “Образование наука и инновационные идеи в мире» Xalqaro ilmiy elektron jurnal” 3-tom 69-soni ISSN 2181-3187:176-182 https://scientific-jl.com/obr/issue/view/227
3. Dolz J. et al. (2020). “HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation”. IEEE Transactions on Medical Imaging. DOI: 10.1109/TMI.2018.2878669
4. A. Rehman et al. (2020). “A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning”. Circuits, Systems, and Signal Processing, 39:757–775.DOI: 10.1007/s00034-019-01246-3
5. Esteva A. et al. (2019). “Deep learning-enabled medical computer vision”. NPJ Digital Medicine, 4(1):1-9. DOI: 10.1038/s41746-020-00376-2
6. F. Isensee et al. (2019). “Automated Design of Deep Learning Methods for Biomedical Image Segmentation”. arXiv:1904.08128.
7. “Deep Learning for Medical Image Analysis” – Aygun et al. (2017), Academic Press.*ISBN: 978-0-12-810408-8*
8. B. H. Menze et al. (2015). “The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)”. IEEE Transactions on Medical Imaging, 34(10):1993–2024. DOI: 10.1109/TMI.2014.2377694