COMPARATIVE STUDY OF FEATURE-LEVEL AND DECISION-LEVEL FUSION STRATEGIES IN NEURAL NETWORK MODELS FOR MULTIMODAL PSYCHODIAGNOSTICS

Authors

  • Rinat Abrarov

DOI:

https://doi.org/10.47390/ts-v3i8y2025No3

Abstract

This paper examines the effectiveness of feature-level and decision-level fusion strategies in neural network models for multimodal psychodiagnostics. Findings indicate that feature-level fusion enhances information extraction, while decision-level fusion improves diagnostic accuracy. A hybrid approach ensures greater reliability and expands applications in clinical practice

References

1. T. E. "Clinic and research: the therapeutic rhythm" Research in Psychotherapy Psychopathology Process and Outcome, 2022, [Online]. Available: https://doi. org/10. 4081/ripppo. 2022. 685 [Accessed: 2025-09-27]

2. S. M. V. M. F. "The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century" Bioengineering, 2024, [Online]. Available: https://doi. org/10. 3390/bioengineering11040337 [Accessed: 2025-09-27]

3. N. L. R. S. C. J. R. "Integrating deep learning with machine learning: technological approaches, methodologies, applications, opportunities, and challenges" SSRN Electronic Journal, 2024, [Online]. Available: https://doi. org/10. 2139/ssrn. 4850000 [Accessed: 2025-09-27]

4. L. C. "How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications" Bioengineering, 2023, [Online]. Available: https://doi. org/10. 3390/bioengineering10121435 [Accessed: 2025-09-27]

5. M. L. Y. J. Y. Z. Z. H. "Medical image analysis using deep learning algorithms" Frontiers in Public Health, 2023, [Online]. Available: https://doi. org/10. 3389/fpubh. 2023. 1273253 [Accessed: 2025-09-27]

6. M. C. M. C. O. Q. B. A. R. D. C. P. J. N. D. P. R. T. T. E. A. "Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation" Molecular Cancer, 2023, [Online]. Available: https://doi. org/10. 1186/s12943-023-01865-0 [Accessed: 2025-09-27]

7. D. K. R. S. A. "Fusion of Attention-Based Convolution Neural Network and HOG Features for Static Sign Language Recognition" Applied Sciences, 2023, [Online]. Available: https://doi. org/10. 3390/app132111993 [Accessed: 2025-09-27]

8. S. A. A. S. S. A. N. A. T. A. A. A. S. N. A. A. A. E. A. "Revolutionizing healthcare: the role of artificial intelligence in clinical practice" BMC Medical Education, 2023, [Online]. Available: https://doi. org/10. 1186/s12909-023-04698-z [Accessed: 2025-09-27]

9. N. E. W. M. A. "Modeling construction and demolition waste quantities in Tanta City, Egypt: a synergistic approach of remote sensing, geographic information system, and hybrid fuzzy neural networks" Environmental Science and Pollution Research, 2023, [Online]. Available: https://doi. org/10. 1007/s11356-023-29735-8 [Accessed: 2025-09-27]

10. S. A. T. A. S. E. K. M. J. M. A. R. C. R. G. E. A. "Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence" Information Fusion, 2023, [Online]. Available: https://doi. org/10. 1016/j. inffus. 2023. 101805 [Accessed: 2025-09-27]

11. D. J. A. B. I. A. M. "Artificial Neural Networks for Navigation Systems: A Review of Recent Research" Applied Sciences, 2023, [Online]. Available: https://doi. org/10. 3390/app13074475 [Accessed: 2025-09-27]

12. T. O. E. A. "Explainable Deep Neural Network for Multimodal ECG Signals: Intermediate vs Late Fusion" ArXiv, 2025, [Online]. Available: https://www. semanticscholar. org/paper/205af8790d3ed5bb8553d76a320aa20fda78818f [Accessed: 2025-09-27]

13. D. G. H. K. S. G. B. P. "Psychological Disorder Detection: A Multimodal Approach using a Transformer-Based Hybrid Model" MethodsX, 2024, [Online]. Available: https://doi. org/10. 1016/j. mex. 2024. 102976 [Accessed: 2025-09-27]

14. Y. C. X. W. J. W. Y. W. L. Y. K. Z. H. C. E. A. "A Survey on Evaluation of Large Language Models" ACM Transactions on Intelligent Systems and Technology, 2024, [Online]. Available: https://doi. org/10. 1145/3641289 [Accessed: 2025-09-27]

15. Y. L. T. H. S. M. J. Z. Y. Y. J. T. H. H. E. A. "Summary of ChatGPT-Related research and perspective towards the future of large language models" Meta-Radiology, 2023, [Online]. Available: https://doi. org/10. 1016/j. metrad. 2023. 100017 [Accessed: 2025-09-27]

16. J. P. K. S. J. D. O. H. A. C. B. R. C. C. G. A. D. E. A. "Consensus statement on concussion in sport: the 6th International Conference on Concussion in Sport–Amsterdam, October 2022" British Journal of Sports Medicine, 2023, [Online]. Available: https://doi. org/10. 1136/bjsports-2023-106898 [Accessed: 2025-09-27]

17. Y. L. M. R. A. J. A. D. A. A. M. A. M. A. Z. B. E. A. "Technology Roadmap for Flexible Sensors" ACS Nano, 2023, [Online]. Available: https://doi. org/10. 1021/acsnano. 2c12606 [Accessed: 2025-09-27]

18. B. S. Y. W. T. S. L. Z. R. G. "Heuristic Feature Engineering for Enhancing Neural Network Performance in Spatiotemporal Traffic Prediction" Computers, Materials & Continua, 2025, [Online]. Available: https://www. semanticscholar. org/paper/d5c78db26288 941707ff40eaf778f0f3ca9875f0 [Accessed: 2025-09-27]

19. H. M. E. W. E. N. S. A. A. R. A. F. A. A. E. "Cervical Cancer Detection: A Comprehensive Evaluation of CNN Models, Vision Transformer Approaches, and Fusion Strategies" IEEE Access, 2025, [Online]. Available: https://www. semanticscholar. org/paper/e7506f1d 9088203f22ee7cf417e532560fe3b2dd [Accessed: 2025-09-27]

20. O. A. M. A. A. M. A. A. E. E. A. A. O. "Physics-Informed Neural Networks in Electromagnetic and Nanophotonic Design" 2025, [Online]. Available: https://www. semanticscholar. org/paper/037e66f37189104d61c0d000de0cee202b7eec9e [Accessed: 2025-09-27]

21. Conceptual Framework of AI Applications in Robotics, 2025. [Online]. Available: https://www. mdpi. com/robotics/robotics-13-00049/article_deploy/html/images/ robotics-13-00049-g001.png

Downloads

Submitted

2025-10-11

Published

2025-10-11

How to Cite

Abrarov, R. (2025). COMPARATIVE STUDY OF FEATURE-LEVEL AND DECISION-LEVEL FUSION STRATEGIES IN NEURAL NETWORK MODELS FOR MULTIMODAL PSYCHODIAGNOSTICS. Techscience Uz - Topical Issues of Technical Sciences, 3(8), 14–27. https://doi.org/10.47390/ts-v3i8y2025No3