NUMERICAL SIMULATION OF A CROSS-DIFFUSION SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS AND DENSITY

Authors

  • Zafar Rakhmonov
  • Jasur Urunbaev

DOI:

https://doi.org/10.47390/ts-v3i11y2025No1

Keywords:

cross-diffusion, nonlinear boundary conditions, self-similar.

Abstract

This paper examines the asymptotic behavior of self-similar solutions to a nonlinear cross-diffusion system with nonlocal boundary conditions and density. Various self-similar solutions to the problem for the case of slow diffusion are constructed, representing the asymptotic behavior of the solutions to the problem under consideration. The leading term of the asymptotic behavior of the self-similar solutions is obtained. For the numerical study of the problem under consideration, a method for selecting the optimal initial approximation for the iterative process is proposed. Numerical calculations are performed using asymptotic formulas as the initial approximation for the iterative process. The calculation results are visualized over time, and an analysis is provided.

References

1. Nie Y-Y, Thomee V.A lumped mass finite-element method with quadrature for a non-linear parabolic problem. IMA J. Numer. Anal., 5 (1985) 371-396. http://dx.doi.org/10.1093 /imanum/5.4.371 .

2. Vanag V.K., Epstein I.R. Cross-diffusion and pattern formation in reactiondiffusion systems. Phys. Chem. Chem. Phys., 11 (2009) 897-912.

http://dx.doi.org/10.1039/B813825G .

3. Elliott C.M., Stuart A.M., The global dynamics of discrete semilinear parabolic equations. SIAM J Num. Anal., 30 (1993) 1622-1663. http://dx.doi.org/10.1137/0730084 .

4. Gerisch A., Chaplain M.A.J., Robust numerical methods for taxis-diffusionreaction systems. applications to biomedical problems, Math. Comp. Mod., 43(2006)49-75. http://dx.doi.org/10.1016/j.mcm.2004.05.016 .

5. Hittmeir S., Jungel A., Cross diffusion preventing blow-up in the two - dimensional Keller-Segel Model. SIAM J Math. Anal., 43 (2011) 997-1022. http://dx.doi.org/10.1137/100813191 .

6. Hoff D., Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM J Num. Anal., 15 (1978) 1161-1177.

http://dx.doi.org/10.1137/0715077 .

7. Dziuk G., Elliott C.M., Finite element methods for surface PDEs, Acta Numer. 22 (2013) 289-396. http://dx.doi.org/10.1017/s0962492913000056.

8. Арипов М.М. Методы эталонных уравнений для решения нелинейных краевых задач. 1988. Ташкент, Фан, 1988.

9. Некоторые вопросы качественной теории нелинейных вырождающихся параболических уравнений второго порядка. / Калашников А.С.// УМН, 1987, т.42, Вып.2 (254) 135-176.

10. Wu Z.Q., Zhao J.N., Yin J.X. and Li H.L. Nonlinear Diffusion Equations. Singapore: World Scientific, 2001.

11. Levine H., The role of critical exponents in blowup theorems. SIAM Rev., 32(2), 1990, 262-288.

12. Murray J.D. Mathematical Biology. Berlin: Springer, 2002-2003 3rd ed..

13. Malchow H, Petrovskii SV, Venturino E. Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. London: Chapman and Hall/CRC Press, 2008.

14. Tsyganov M.A., Biktashev V.N., Brindley J., Holden A.V., Ivanitsky G.R., Waves in cross-diffusion systems - a special class of nonlinear waves. UFN, 2007, vol. 177, issue 3, 275-300. doi: http://dx.doi.org/10.1070/PU2007v050n03ABEH006114

15. Rakhmonov Z., Urunbaev J., and Alimov A. Properties of solutions of a system of nonlinear parabolic equations with nonlinear boundary conditions// AIP Conference Proc., 2022 vol. 2637, no. 1, pp. 040008-1-12. doi:10.1063/5.0119747

16. Rakhmonov Z., Alimov A., Urunbaev J. On the behavior of solutions for a system of multidimensional diffusion equationswith nonlinear boundary conditions // AIP Conference Proc., 2024, vol. 3085, no. 1, pp. 020032. https://doi.org/10.1063/5.0194896

17. Rakhmonov Z., Urunbaev E., Urunbaev J., Joniev A. On a problem of multidimensional cross-diffusion with nonlinear boundary conditions // International Journal of Applied Mathematics 2025 vol. 38 No. 1s, P. 987-996.

18. Wang S, Xie C H, Wang M X. Note on critical exponents for a system of heat equations with coupled boundary conditions. J Math Analysis Appl, 1998, 218: 313-324.

19. Wang S, Xie C H, Wang M X, Blow-up rate for a system of heat equations fully coupled in boundary conditions. Nonlinear Analysis, 1999, 35: 389-398.

Submitted

2025-11-30

Published

2025-11-30

How to Cite

Rakhmonov, Z., & Urunbaev, J. (2025). NUMERICAL SIMULATION OF A CROSS-DIFFUSION SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS AND DENSITY. Techscience Uz - Topical Issues of Technical Sciences, 3(11), 4–15. https://doi.org/10.47390/ts-v3i11y2025No1

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.